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Abstract. A new formula describing the large-order behaviour of the strong coupling perturbation
coefficients for the anharmonic oscillators with the HamiltonianH = −d2/dx2 + x2 + βx2m is
suggested. A new method for the accurate calculation of the square root branch points of the energy
from the numerical values of the coefficients is also suggested. The branch points and the related
minimal values of the coupling constantβ for which the expansion converges are calculated for
the ground state of the quartic, sextic, octic and decadic oscillators.

In this letter, we investigate the Schrödinger equation

Hψ = E(β)ψ (1)

for the anharmonic oscillators, where

H = p2 + x2 + βx2m β > 0, m > 2 (2)

andp = −id/dx. As is well known, the energyE(β) can be expressed as a strong coupling
perturbation series in powers ofβ−2/(m+1) (see e.g. [1–3])

E(β) = β1/(m+1)
∞∑
n=0

Knβ
−2n/(m+1). (3)

The numerical values of theKn coefficients were investigated, for example, in [4–11]. To the
best of our knowledge, the large-order behaviour of theKn coefficients was investigated only
in [5], where the large-order formula for theKn coefficients

Kn = Acos(nϕ + δ)

|z0|nn3/2
(4)

whereϕ = arg z0 was derived. Here,A andδ are constants,z0 denotes the square root branch
point of the energyε(z) with the smallest distance to the origin [1,2,12,13]

ε(z) = β−1/(m+1)E(β) =
∞∑
n=0

Knz
n (5)

andz = β−2/(m+1). The value ofz0 = −4.193 684 + 2.169 740i for the ground state of the
quartic oscillator and a few other states of this oscillator is known from [14]. The importance
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of the branch pointz0 follows from the fact that it determines the minimal value ofβ for which
the series (3) converges. It follows from equations (3), (4) that

βmin = 1

|z0|(m+1)/2
. (6)

The values of the constantsA andδ are not known.
The aim of this letter is (i) to generalize equation (4), (ii) to suggest a new general method

of calculatingz0 and (iii) to calculatez0 andβmin for the ground state of the quartic, sextic,
octic and decadic oscillators.

First we generalize equation (4). The energyε(z) can be in the neighbourhood of the
pointsz0 andz∗0 described by the series [1,12,15]

ε(z) = c1[(z− z0)(z− z∗0)]1/2 + c2[(z− z0)(z− z∗0)]3/2 + · · ·
+d0 + d1(z− z0)(z− z∗0) + d2[(z− z0)(z− z∗0)]2 + · · ·
= c1|z0|(t2 − 2t cosϕ + 1)1/2 + c2|z0|3(t2 − 2t cosϕ + 1)3/2 + · · ·

+d0 + d1|z0|2(t2 − 2t cosϕ + 1) + d2|z0|4(t2 − 2t cosϕ + 1)2 + · · · (7)

whereci and di are constants andt = z/z0. The terms with thedi coefficients do not
contribute to the large-order behaviour of theKn coefficients. Now we observe that the function
(t2−2t cosϕ+1)−α is the generating function of the Gegenbauer polynomialsC(α)n (cosϕ) [16]:

(t2 − 2t cosϕ + 1)−α =
∞∑
n=0

tnC(α)n (cosϕ) (8)

whereα = − 1
2,− 3

2,− 5
2, . . . . Therefore, a general large-order formula for theKn coefficients

following from equations (5), (7) and (8) equals

Kn = 1

|z0|n−1
[c1C

(−1/2)
n (cosϕ) + c2|z0|2C(−3/2)

n (cosϕ) + · · ·]. (9)

To find the relation of this formula to equation (4) we proceed as follows. The Gegenbauer
polynomials can be expressed as [16]

C(α)n (cosϕ) =
n∑
i=0

a
(α)
i cos((n− 2i)ϕ) (10)

where

a
(α)
i = a(α)n−i =

0(α + i)0(α + n− i)
i!(n− i)![0(α)]2

. (11)

It follows from equation (10) that equation (9) can also be written in the form

Kn = 1

|z0|n−1

[
cos(nϕ)

n∑
i=0

(c1a
(−1/2)
i + c2|z0|2a(−3/2)

i + · · ·) cos(2iϕ)

+ sin(nϕ)
n∑
i=0

(c1a
(−1/2)
i + c2|z0|2a(−3/2)

i + · · ·) sin(2iϕ)

]
. (12)

The large-order behaviour of the coefficientsa(α)i equals

a
(−1/2)
0 = − 1

2
√
πn3/2

[1 + 3/(8n) + 25/(128n2) + · · ·] (13)

a
(−1/2)
1 = 1

4
√
πn3/2

[1 + 15/(8n) + 385/(128n2) + · · ·] (14)

a
(−1/2)
2 = 1

16
√
πn3/2

[1 + 27/(8n) + 1225/(128n2) + · · ·] (15)
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· · ·
a
(−3/2)
0 = 3

4
√
πn5/2

[1 + 15/(8n) + 385/(128n2) · · ·] (16)

a
(−3/2)
1 = − 9

8
√
πn5/2

[1 + 35/(8n) + 1785/(128n2) · · ·] (17)

a
(−3/2)
2 = − 9

32
√
πn5/2

[1 + 55/(8n) + 4305/(128n2) · · ·] (18)

· · ·
First we restrict ourselves to theα = − 1

2 term in equation (12). If we take the leading 1/n3/2

term in equations (13)–(15) we get from equation (12)

Kn = 1

|z0|n−1n3/2
[e1 cos(nϕ) + f1 sin(nϕ)] (19)

where e1 and f1 are constants. Introducing further cosδ = e1/

√
e2

1 + f 2
1 and sinδ =

−f1/

√
e2

1 + f 2
1 we see that this equation can be re-written in the form of equation (4). Thus,

equation (4) corresponds to the leading 1/n3/2 term of equations (9) and (12). Corrections to
equation (19) can be found analogously. It is obvious that the large-order formula (12) can
also be written in the form

Kn = 1

|z0|n−1n3/2
[(e1 + e2/n + e3/n

2 + · · ·) cos(nϕ) + (f1 + f2/n + f3/n
2 + · · ·) sin(nϕ)]

(20)

whereei andfi are constants.
We now suggest a general method of calculating the value of the branch pointz0 from the

numerical values of theKn coefficients. To calculate|z0| andϕ we can use equation (9) and
the recurrence relation for the Gegenbauer polynomials [16]

(n + 2α − 1)C(α)n−1− 2(n + α) cos(ϕ)C(α)n + (n + 1)C(α)n+1 = 0. (21)

Taking only the firstα = − 1
2 term in equation (9) we get from equation (21) the equation used

in [6]

(n− 2)Kn−1− (2n− 1)Re(z0)Kn + (n + 1)|z0|2Kn+1 = 0. (22)

If we taken = n0 andn = n0 + 1, wheren0 is a large integer, we obtain two equations for two
unknowns from which Re(z0) and|z0|2 can be calculated. It is seen from equations (12)–(18)
that equation (22) correctly respects only the terms depending on 1/n3/2.

Considering theα = − 1
2 andα = − 3

2 terms in equation (9) we analogously get

(n− 2)xn−1− (2n− 1)Re(z0)xn + (n + 1)|z0|2xn+1 = 0 n = n0, . . . , n0 + 3 (23)

(n− 4)yn−1− (2n− 3)Re(z0)yn + (n + 1)|z0|2yn+1 = 0 n = n0, . . . , n0 + 3 (24)

Kn = xn + yn n = n0 − 1, . . . , n0 + 4 (25)

where

xn = c1

|z0|n−1
C(−1/2)
n (cosϕ) (26)

yn = c2

|z0|n−3
C(−3/2)
n (cosϕ). (27)

Equations (23)–(25) are a system of 14 nonlinear equations for 14 unknownsxn, yn, Re(z0)

and|z0|2 which can be solved numerically. Ifxn, yn, Re(z0) and|z0|2 are known we can return
to equations (26), (27) forn = n0 and calculate the coefficientsc1 andc2. Equations (23)–(25)
correctly respect all the terms depending on 1/n3/2 and 1/n5/2.
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It is obvious that equations (23)–(25) can be generalized to an arbitrary number of terms
in equation (9). Takingj > 1 terms in equation (9) with the coefficientsc1, . . . , cj we have to
solve 2(j2+j +1) equations for the same number of unknowns. In general, these equations can
be reduced to two nonlinear equations for Re(z0) and|z0|2. The coefficientsci , i = 1, . . . , j
can be calculated analogously to the casej = 2.

In numerical calculations, we used theKn coefficients for the ground state of the quartic,
sextic, octic and decadic oscillators computed by the method described in [17, 18] and found
the values of the branch pointz0,βmin and the constantsci (see table 1). It is seen that the values
of z0, βmin andci coefficients stabilize with increasingj . We also note that the values of the
coefficientsci , i > 1 go down with increasingi so that we can restrict ourselves to a few terms
in equation (9). The value of the branch pointz0 = −4.193 6841+2.169 7397i for the quartic
oscillator following from table 1 is more exact than the valuez0 = −4.193 684 + 2.169 740i
found in [14]. A more detailed discussion will be published elsewhere.

Summarizing, we suggested the general large-order formula (9) for theKn coefficients,
showed that equation (4) is equivalent to the leading term (19) of equation (9) and derived
equation (20) describing the large-order corrections to equation (19). Further, we suggested a
new more general method of calculating the branch pointz0 and the expansion coefficientsci
from the numerical values of theKn coefficients. The values of the branch pointz0, βmin, and
the constantsci were computed for the ground state of the quartic, sextic, octic and decadic
oscillators.

Our discussion is based on the existence of the expansion (7). It is obvious that our method
can be applied not only to the anharmonic oscillators but also to more general problems with
the same character of the branch points. Extension to a more general fraction-like character of
the branch points also seems to be possible. For this reason, we believe that the results of this
letter contribute to better understanding of the large-order perturbation expansions in general.

This work was supported in part by the NSERC and the CFCSU of Canada and the GA CR
(grant no 202/97/1016) and the GA UK (grant no 155/96) of the Czech Republic.
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